Jump to content

  • Set Your Location
  • Sign in or Enroll
Set Your LocationSutter Tracy Community Hospital
  • Sign in or Enroll
    • Open I want to choose my medical group or hospital
    • Clear my location
Change Location
Sutter Health
  • Video Visits
  • Find Doctors
  • Find Locations
  • Treatments & Services
    • Video Visits
    • Find Doctors
    • Find Locations
    • Treatments & Services
    • COVID-19 Resources
    • Pay a Bill
    • Symptom Checker
    • Get Care Today
    • Health & Wellness
    • Classes & Events
    • Research & Clinical Trials
    • For Patients
    • About Sutter Health
    • Giving
    • Volunteering
    • Careers
    • News
    • For Medical Professionals
    • Other Business Services
Close Search
  • Home
  • Sutter Tracy
  • Research
  • Biostatistics
Content

Predicting all-cause risk of 30-day hospital readmission using artificial neural networks.

Description

Jamei M, Nisnevich A, Wetchler E, Sudat S, Liu E., PLoS One. 12(7):e0181173. doi: 10.1371/journal.pone.0181173. eCollection 2017., 2017 Jul 14

Investigators

Sylvia Sudat, PhD

Abstract

Avoidable hospital readmissions not only contribute to the high costs of healthcare in the US, but also have an impact on the quality of care for patients. Large scale adoption of electronic health records (EHR) has created the opportunity to proactively identify patients with high risk of hospital readmission, and apply effective interventions to mitigate that risk.

To that end, in the past, numerous machine-learning models have been employed to predict the risk of 30-day hospital readmission. However, the need for an accurate and real-time predictive model, suitable for hospital setting applications still exists. Here, using data from more than 300,000 hospital stays in California from Sutter Health's EHR system, we built and tested an artificial neural network (NN) model based on Google's TensorFlow library.

Through comparison with other traditional and non-traditional models, we demonstrated that neural networks are great candidates to capture the complexity and interdependency of various data fields in EHRs. LACE, the current industry standard, showed a precision (PPV) of 0.20 in identifying high-risk patients in our database. In contrast, our NN model yielded a PPV of 0.24, which is a 20% improvement over LACE. Additionally, we discussed the predictive power of social determinants of health (SDoH) data, and presented a simple cost analysis to assist hospitalists in implementing helpful and cost-effective post-discharge interventions.

Pubmed Abstract

Pubmed AbstractOpens New Window

Associated Topics

  • Biostatistics
  • Health Services
  • Medical Informatics

Related Publications

The impact of consumer affordability on access to assisted reproductive technologies and embryo transfer practices: an international analysis.

Chambers GM, Hoang VP, Sullivan EA, Chapman MG, Ishihara O, Zegers-Hochschild F, Nygren KG, Adamson GD.
Fertil Steril. 101(1):191-198.e4. doi: 10.1016/j.fertnstert.2013.09.005. Epub 2013 Oct 21.
2014 Jan 01

Minimran: a robust online system to implement minimization in randomized clinical trials.

Xiao L, Ma J.
JSM Proc, Biopharm Section. Alexandria, VA: American Statistical Association 2014; 1094-1100.
2014 Aug 06

Using variable importance measures from causal inference to rank risk factors of schistosomiasis infection in a rural setting in China.

Sudat SE, Carlton EJ, Seto EY, Spear RC, Hubbard AE.
Epidemiol Perspect Innov. 7:3. doi: 10.1186/1742-5573-7-3.
2010 Jul 14

Predicting need for advanced illness or palliative care in a primary care population using electronic health record data.

Jung K, Sudat SEK, Kwon N, Stewart WF, Shan NH.
J Biomed Inform. 92:103115.
2019 Apr 01

Causal inference and prediction in health studies: environmental exposures and schistosomiasis, HIV-1 genotypic susceptibility scores and virologic suppression, and risk of hospital readmission for heart failure patients.

Sudat, S.
UC Berkeley. ProQuest ID: Sudat_berkeley_0028E_12729. Merritt ID: ark:/13030/m5xw4pw5. Retrieved from https://escholarship.org/uc/item/9z03362s
2012 Jun 01
The Sutter Health Network of Care
Expertise to fit your needs
Primary Care

Check-ups, screenings and sick visits for adults and children.

Specialty Care

Expertise and advanced technologies in all areas of medicine.

Emergency Care

For serious accidents, injuries and conditions that require immediate medical care.

Urgent Care

After-hours, weekend and holiday services.

Walk-In Care

Convenient walk-in care clinics for your non-urgent health needs.

  • Contact Us
  • Find Doctors
  • Find Locations
  • Request Medical Records
  • Make a Gift
Sign in to My Health Online

Billing and Insurance

  • Pay a Bill
  • Accepted Health Plans
  • Estimate Costs
  • Medicare Advantage

About Sutter

  • About Our Network
  • Community Benefit
  • Annual Report
  • News

Our Team

  • For Employees
  • For Medical Professionals
  • For Vendors
  • For Volunteers

Careers

  • Jobs at Sutter
  • Physician Jobs
  • Graduate Medical Education

Copyright © 2023 Sutter Health. All rights reserved. Sutter Health is a registered trademark of Sutter Health ®, Reg. U.S. Patent & Trademark office.

  • ADA Accessibility
  • Privacy
  • Do Not Sell My Personal Information
  • LinkedIn Opens new window
  • YouTube Opens new window
  • Facebook Opens new window
  • Twitter Opens new window
  • Instagram Opens new window
  • Glassdoor Opens new window

Cookie Policy

We use cookies to give you the best possible user experience. By continuing to use the site, you agree to the use of cookies. Privacy Policy Cookie Preferences

Privacy Policy Cookie Preferences