Jump to content

Choose locationSutter Amador Hospital
  • Sign in or Enroll
    • Open I want to choose my medical group or hospital
    • Clear my location
Change Location

We've expanded your view

You are now viewing all services in the Sutter Health network. You can change your location above to narrow your view to a medical group, hospital, city or zip.
Sutter Health
  • Video Visits
  • Find Doctors
  • Find Locations
  • Treatments & Services
  • Locations
  • Sign in or Enroll
    • Video Visits
    • Find Doctors
    • Find Locations
    • Treatments & Services
    • COVID-19 Resources
    • Pay a Bill
    • Symptom Checker
    • Get Care Today
    • Diseases & Conditions
    • Health & Wellness
    • Classes & Events
    • Research & Clinical Trials
    • For Patients
    • About Sutter Health
    • Giving
    • Volunteering
    • Careers
    • News
    • For Medical Professionals
    • Other Business Services
Close Search
  • Home
  • Sutter Amador
  • Research
  • Medical Informatics
Content

Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population.

Description

Ward A, Sarraju A, Chung S, Li J, Harrington R, Heidenreich P, Palaniappan L, Scheinker D, Rodriguez F., NPJ Digit Med. 3:125. doi: 10.1038/s41746-020-00331-1. eCollection 2020., 2020 Sep 23

Investigators

Jiang Li, Ph.D., MPH, Assistant Scientist

Abstract

The pooled cohort equations (PCE) predict atherosclerotic cardiovascular disease (ASCVD) risk in patients with characteristics within prespecified ranges and has uncertain performance among Asians or Hispanics.

It is unknown if machine learning (ML) models can improve ASCVD risk prediction across broader diverse, real-world populations. We developed ML models for ASCVD risk prediction for multi-ethnic patients using an electronic health record (EHR) database from Northern California.

Our cohort included patients aged 18 years or older with no prior CVD and not on statins at baseline (n = 262,923), stratified by PCE-eligible (n = 131,721) or PCE-ineligible patients based on missing or out-of-range variables. We trained ML models [logistic regression with L2 penalty and L1 lasso penalty, random forest, gradient boosting machine (GBM), extreme gradient boosting] and determined 5-year ASCVD risk prediction, including with and without incorporation of additional EHR variables, and in Asian and Hispanic subgroups.

A total of 4309 patients had ASCVD events, with 2077 in PCE-ineligible patients. GBM performance in the full cohort, including PCE-ineligible patients (area under receiver-operating characteristic curve (AUC) 0.835, 95% confidence interval (CI): 0.825-0.846), was significantly better than that of the PCE in the PCE-eligible cohort (AUC 0.775, 95% CI: 0.755-0.794). Among patients aged 40-79, GBM performed similarly before (AUC 0.784, 95% CI: 0.759-0.808) and after (AUC 0.790, 95% CI: 0.765-0.814) incorporating additional EHR data.

Overall, ML models achieved comparable or improved performance compared to the PCE while allowing risk discrimination in a larger group of patients including PCE-ineligible patients. EHR-trained ML models may help bridge important gaps in ASCVD risk prediction.

Pubmed Abstract

Pubmed AbstractOpens New Window

Associated Topics

  • Cardiovascular Diseases
  • Medical Informatics

Related Publications

Features of patient-centered primary care and the use of ambulatory care.

Wong P, Panattoni L, Tai-Seale M.
Popul Health Manag. doi: 10.1089/pop.2016.0079. [Epub ahead of print]Send to
2017 Jan 11

A clinician's guide to privacy and communication in the ICU.

Francis L, Vorwaller MA, Aboumatar H, Frosch DL, Halamka J, Rozenblum R, Rubin E, Lee BS, Sugarman J, Turner K, Brown SM; Privacy, Access, and Engagement Task Force of the Libretto Consortium of the Gordon and Betty Moore Foundation.
Crit Care Med. [Epub ahead of print]
2016 Dec 02

Synergistic drug combinations from electronic health records and gene expression.

Low YS, Daugherty AC, Schroeder EA, Chen W, Seto T, Weber S, Lim M, Hastie T, Mathur M, Desai M, Farrington C, Radin AA, Sirota M, Kenkare P, Thompson CA, Yu PP, Gomez SL, Sledge GW Jr, Kurian AW, Shah NH.
J Am Med Inform Assoc. pii: ocw161. doi: 10.1093/jamia/ocw161. [Epub ahead of print]
2016 Dec 09

Estimating generic drug use with electronic health records data from a health care delivery system: implications for quality improvement and research.

Nimbal V, Segal JB, Romanelli RJ.
J Manag Care Spec Pharm. 22(10):1143-7. doi: 10.18553/jmcp.2016.22.10.1143.
2016 Oct 01

What will it take to reduce the app gap?

Paget L, Frosch DL.
J Gen Intern Med. [Epub ahead of print]
2016 Aug 04
The Sutter Health Network of Care
Expertise to fit your needs
Primary Care

Check-ups, screenings and sick visits for adults and children.

Specialty Care

Expertise and advanced technologies in all areas of medicine.

Emergency Care

For serious accidents, injuries and conditions that require immediate medical care.

Urgent Care

After-hours, weekend and holiday services.

Walk-In Care

Convenient walk-in care clinics for your non-urgent health needs.

About Sutter

  • About Our Network
  • Annual Report
  • Awards
  • Community Benefit
  • Contact Us
  • News
  • Giving
  • Find Care

  • Birth Centers
  • Care Centers
  • Emergency Rooms
  • Hospitals
  • Imaging
  • Labs
  • Surgery Centers
  • Urgent Care
  • Walk-In Care
  • View All >
  • Featured Services

  • Behavioral Health
  • Cancer Services
  • Family Medicine
  • Home Health and Hospice
  • Orthopedics
  • Pediatrics
  • Pregnancy
  • Primary Care
  • Women's Health
  • View All >
  • Patient Resources

  • Accepted Health Plans
  • Classes and Events
  • Estimate Costs
  • Flu Resources
  • Health and Wellness
  • Medical Records
  • Medicare
  • My Health Online
  • Pay a Bill
  • Symptom Checker
  • Our Team

  • For Employees
  • Physician Careers
  • Recruiting Events
  • Sutter Careers
  • Vendors
  • Volunteers
    • ADA Accessibility
    • Contact
    • Privacy
    • Do Not Sell My Personal Information

    • LinkedIn Opens new window
    • YouTube Opens new window
    • Facebook Opens new window
    • Twitter Opens new window
    • Glassdoor Opens new window
    • Instagram Opens new window

    Copyright © 2021 Sutter Health. All rights reserved. Sutter Health is a registered trademark of Sutter Health ®, Reg. U.S. Patent & Trademark office.

    Cookie Policy

    We use cookies to give you the best possible user experience. By continuing to use the site, you agree to the use of cookies. Privacy Policy Cookie Preferences

    Privacy Policy Cookie Preferences